

Preclinical evaluation of radiolabeled proteins

Anzhelika Vorobyeva, PhD, Docent Anna Orlova, Professor Vladimir Tolmachev, Professor

IGP Department, Uppsala University, Uppsala, Sweden

Drug discovery process

Food and Drug Administration (FDA) in the United States (or comparable agency in other countries)

The development of a new drug can take several decades and billion dollars invested

Lombardino & Lowe. Nature Reviews Drug Discovery (2004) 3, 853-862

Selection of the best candidate

Possible selection criteria:

- Affinity
- Termal stability
- Production
- Labeling radionuclide
- Labeling method
- Label stability
- Protein/target interaction
- Biodistribution profile
- In vivo targeting properties

Pre-clinical evaluation of radiolabeled proteins

Applications of proteins

- Basic research
- **Preclinical development**: pharmacokinetic studies, targeting properties, therapeutic dose
- Clinical diagnostic: patient stratification, therapy response
- Treatment planning: dosimetry estimation

What is the goal? Imaging or therapy?

Preclinical evaluation of the targeting molecule

- Labeling of targeting molecule: optimisation of labeling yield, confirmation of identity of labeled compound, label stability (shelf-life, stability in blood-plasma)
- In vitro characterisation: specificity, binding properties, cellular processing, therapy effect
- In vivo characterisation: normal biodistribution, target specificity, biodistribution in tumor bearing mice, confirmatorial image, dosimetry, therapy

Labeling of targeting molecule

Optimization of labeling:

Simple procedure High yield Reproducibility

Identity (HPLC analysis, SDS-PAGE) Stability of labeling:

Shelf-life (stabiltiy in solution over time) Stability under challenge (KI, histidine, EDTA) Stability in blood plasma

Labeling of targeting molecule

- Stability of tracer in blood

transchelation, free radionuclide, colloids

- Chemical modifications

conformation, target recognition, molecular charge, lipophilicity

- Cellular processing by malignant cells residualising properties of radiocatabolites
- Retention in healthy tissues

residualising properties of radiocatabolites

57Co-DOTA-ZHER1

Optimal labeling conditions!

Targeting cell-surface receptors

Tolmachev et al. Lancet Oncology, 2010

In vitro characterisation

Specificity:

Saturable targeting No binding to other targets

Saturation by "cold" + Radiolabeled compound

Radiolabeled compound only

Cells expressing a target

In vitro specificity

In vitro characterisation

Specificity

Binding properties

Dissociation constant

Inhibition

Binding competent fraction

Cellular processing

Therapy effect

Equilibrium binding studies

Association of a ligand to its receptor and the dissociation of the resulting ligand-receptor complex are reversible processes that occur concomitantly <u>until equilibrium</u> is reached

$$\frac{[\text{Ligand}] \cdot [\text{Receptor}]}{[\text{Ligand} \cdot \text{Receptor}]} = \frac{k_{\text{off}}}{k_{\text{on}}} = K_{\text{d}}$$

k on	Association rate constant or on-rate constant
k _{off}	Dissociation rate constant or off-rate constant
K _d	Equilibrium dissociation constant

Binding properties: Dissociation constant, K_D

BiaCore technology (receptors attached on a chip)

Binding properties: Dissociation constant, K_D

UNIVERSITET

Saturation experiment: Alternative way to measure K_d and B_{max}

1) To determine the affinity of a radioligand for a receptor

2) The density (B_{max}) of a specific receptor or receptor subtype on cells / tissues

Results of the saturation experiment are plotted with pmol/ 100 k cells on the Y axis and concentration of radioactive ligand (pM) on the X axis. The resulting graph is a hyperbola and is called a saturation curve

Saturation experiment: Alternative way to measure K_d and B_{max}

 ➢ Use several concentrations (up to 10) of radiolabeled ligand
0.1x K_D ← K_D → 10x K_D
➢ Long incubation (4-8 hours)

For each concentration 4 dishes (3 non-blocked, 1 blocked) + 1 standard

1 dish blocked

Binding properties: Dissociation constant, K_D

Saturation analysis

Inhibition, IC₅₀

Increasing concentration of **non-labeled** targeting molecule

Inhibition curve for 10 variants

- D36MBP-342
- P38MBP-342
- ▲ R32MBP-342
- ▼ F5MBP-342
- M9MBP-342
- R10MBP-342
- + R28MBP-342
- X Zher2-342-C-MBP
- L18MBP-342
- N24MBP-342

Competitive binding experiments

measure equilibrium binding of a single concentration of

radioligand at various concentrations of an unlabeled competitor

- Single concentration of ¹¹¹In-labeled affibody
- Range of concentrations of "cold Ga" labeled affibody analogue

Range of concentrations
of "cold In" labeled affibody analogue

 $IC_{50}^{nat}Ga-ZHP1 = 24.1 \pm 2.0 nM$ $IC_{50}^{nat}In-ZHP1 = 22.2 \pm 1.1 nM$ To compare the affinities of several compounds in one assay

Vorobyeva et al. Sci Rep. 2018

Determination of the immunoreactive fraction of radiolabeled mAbs by linear extrapolation to binding at infinite antigen excess

• Lindmo et al. J Immunol Methods. 1984 Aug 3;72(1):77-89.

Lindmo assay

- For properly performed conjugation procedures, immunoreactive fractions of about 0.9 were obtained, but a prolonged chloramine-T reaction for ¹²⁵I-labeling resulted in an immunoreactive fraction of 0.6
- Due to its principle of determining binding at infinite antigen excess, the present method is insensitive to variation in the actual amounts of cells and antibody used, as well as the incubation time. We therefore recommend it as a quality control procedure for radiolabeled antibodies

Binding competent fraction

Increasing concentration of targeted molecule

In vitro characterisation

Specificity:

Binding properties:

Cellular processing:

Binding Internalization

Retention

Therapy effect

Cellular retention of radionuclides

The use of residualizing labels (metals) improves cellular retention of radionuclides delivered by antibodies because antibodies are internalized rapidly!

Retention in excretory organs

¹²⁴I: non-residualizing ¹¹¹In: residualizing

Internalization in excretory organs is much faster than in tumors

Same protein, different labels

UPPSALA UNIVERSITET

Non-residualizing label (¹²⁵l halogen)

Residualizing label (^{99m}Tc(CO)₃)

Retention in tumor, Retention in normal organs

Retention in tumor, Wash-out from normal organs

Scaffold proteins are usually internalized slowly by tumor cells

Vorobyeva et al. Contrast Media & Molecular Imaging 2018

Comparison of labels

A **residualizing label** is trapped inside the cell after internalization and proteolysis of a labeled protein. It shows the location of protein uptake and catabolism that occurred **prior to the studied time point**

A **non-residualizing label**, i.e. its radiocatabolites diffuse from cells, shows the location of a labeled protein in the extracellular space/membrane <u>at the studied time point</u>

Comparison of these two types of label **provides information about protein localization** (intracellular space or cell membrane) and speed of internalization *in vivo*

UPPSALA

Therapy effect: growth curves UNIVERSITET

Therapy effect: clonogenic survival assay

External beam radiation therapy

In vivo characterisation

Normal biodistribution Target specificity Biodistribution in tumor bearing mice Imaging (confirmation) Dosimetry Therapy

Biodistribution: time points

Example: small protein, 1 - 4 h

Normal biodistribution

Animals (without tumors)

Several time points (distribution phase + elimination)

Normal biodistribution

- Animals (without tumors)
- Several time points (distribution phase + elimination)
- Organs should be studied
 - blood
 - excretory organs (liver, kidneys)
 - organs with normal target expression
 - organ with high accumulation of radiocatabolites

In vivo target specificity

Trastuzumab

HER2 targeting

1. Block by itself

2. Use a compound of same size but no specific binding

3. Several HER2+ or HER2- tumor models

UNIVERSITET

Biodistribution in tumor bearing mice

Could be one time point experiment (dedicated from normal biodistribution experiment)

Biodistribution in tumor bearing mice

Optimal injected specific radioactivity

UNIVERSITET

Biodistribution in tumor bearing mice

Optimal injected specific radioactivity

Imaging targeting molecule

needed if clinical trial is planned multiple time points full scale biodistribution in normal mice

Nuclide-based therapeutic targeting molecule

needed for planning of therapy experiment

multiple time point full scale biodistribution in tumor bearing mice

Area under curve (AUC) for tumors >> for healthy organs

UNIVERSITET

Affibody-Based PNA Pretargeting

Dosimetry Residence of ¹⁷⁷Lu (decay uncorrected)

UPPSALA LINIVERSITET

Calculation of Area Under Curve for Dosimetry Evaluation

Should be carefully planned (expensive, time consuming)

appropriate control groups

vehicle (PBS, saline)

unspecific molecule with similar kinetics

un-labeled targeting molecule

number of animals per group

end point

LIPPSAL A

Radionuclide Therapy of HER2+ Xenografts Using Affibody-Based PNA Pretargeting UNIVERSITET

6 cycles of radionuclide therapy with ¹⁷⁷Lu-HP2 doubled median survival of mice (66 d. vs 37 d.)

Westerlund, Altai et al. J Nucl Med. 2018 Jul;59(7):1092-1098. doi: 10.2967/jnumed.118.208348.

Radionuclide therapy with ¹⁷⁷Lu-affibody-ABD prevented formation of tumors in mice

Tolmachev et al. Cancer Res. 2007; 67(6):2773–82. Orlova et al. J. Nucl. Med. 2013; 54: 961–968

Pre-clinical evaluation of radiolabeled proteins

