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Standard treatment options 
of cancer

http://puhuahospital.com/images/ckeditor/images/breast-cancer-standard-treatment-plan.jpg

• About 80% of patients with localized tumors are cured by a 
combination of surgery, radiotherapy and chemotherapy

• Patients with distant metastasis and multifocal disease need 
new options, such as targeted therapy

Targeted radionuclide therapy, Speer, 2012



Ionizing radiation for therapy

1. External-beam radiation 
therapy (EBRT)

• The most common form of RT

• X-ray beam delivers a radiation dose 
to the tumor

• Damages not only tumors, but  
healthy tissues

2. Sealed source radiation 
therapy (Brachytherapy)
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https://readanddigest.com; https://wikipedia.org; https://openPR.com 

3. Systemic RT

Radiopharma-
ceuticals



Radionuclides

• Development of resistance by cancer is slow 
(to alpha emitters with high LET)

• High efficiency of cell killing due to cross-fire 
irradiation (no need to target each cancer cell)

• Possible to combine with immuno- and 
chemotherapy

• Different toxicity profile than for drugs 
(radiosensitive bone marrow and kidneys)
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Radioactive decay

Imaging
PET

Imaging
SPECT

Therapy

Therapy

https://chem.libretexts.org/

spontaneous breakdown of a nucleus 
resulting in the release of energy

Note: One radionuclide can have several types of emission at the same time



Radiation emitted by nuclides
can be in the form of...

a-particles (4He2+)
b-particles ( can be b- and b+ )
g-rays (high energy quanta)

Energy released by the decay of an atom
1 eV = 1.6 × 10−19 J
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Interaction of radiation with matter
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- particles
- high energy 
photons
- neutrons

Linear Energy Transfer (LET) - amount of energy the particle emits 
per unit track length and is deposited near it

ionization event
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Linear Energy Transfer

High
LET

Low
LET

ca. 0.2 keV/µm

50-230 keV/µm



Mechanism of action
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Double strand DNA breaks

- Mitotic catastrophy
- Apoptosis

LET- linear energy transfer
Dose- energy deposition per mass unit 
Dose rate- dose per time unit

+ base damage;
+ DNA-protein cross-linking
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Secondary mechanism of damage is through 
formation of ROS: Reactive Oxygen Species 
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Gamma radiation

• Easily penetrates living bodies
• Can be detected by external devices and used for 

reconstruction of distribution of radioactivity in vivo

• Low local dose
• Irradiation of distant normal tissues
• NOT USEFUL FOR RADIONUCLIDE THERAPY
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a particles

 Poor availability of nuclides (211At, 223Ra, 225Ac, 227Th)

a

b

• High probability of DSB 
independent of dose rate

• Range up to ~10 cell diameters 
 suitable for treatment of
single cells and micrometastases

• No Oxygen Enhancement Effect  
destroys even hypoxic tumors
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Nuclide           Half-life     Daughters        Production

212Bi                  60.6 min     212Po, 208Th      Generator
213Bi                  45.6 min     213Po, 209Tl,      Generator

209Pb
211At                 7.2 h            211Po, 209Bi       Cyclotron
225Ac                 10 d            211Fr; 217At,      Generator

213Bi, 213Po, 
209Tl, 209Pb

227Th                18.7 d          223Ra,219Ra,      Generator
215Po, 211Pb,
211Bi
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b- particles

Sphere       Absorbed fraction
Mass (g)          131I 90Y

0.01                  0.77       0.23
0.1                    0.89        0.44
1                        0.97       0.7
10 0.99       0.86

d= 3 mm
E= 11 mm

d= 11 mm
E= 11 mm

90Y

131I

d= 3 mm
E= 3 mm

d= 11 mm
E= 3 mm

Eβ= 0.2 MeV

Eβ= 0.9 MeV
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b- particles

• Different nuclides are optimal for different tumor sizes
• Low LET, dose rate-dependent effect
• Effect depends on hypoxia/oxygenation of tumours
• Dose is more localized than for gamma

0 at single cell 
1 ng

max at mass 
1 g

max at mass 
1 µg

Tod W. Speer ”Targeted Radionuclide Therapy”

max at mass 
1 mg
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Commercially available
therapeutic radionuclides

Nuclide Decay

mode

Half-

life

(days)

Average b

energy 

(MeV)

Average 

range in 

tissue (mm)

Photon 

radiation, 

(keV)

188Re b- 0.71 0.764 3.5 155 (15%)

90Y b- 2.7 0.935 3.9 -

177Lu b- 6.7 0.133 0.67 208 (11%)

131I b- 8.0 0.181 0.91 364 (82%)



Targeted cancer therapy
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Passive targeting Active targeting

Uses native chemical properties
of a nuclide and its participation
in biochemical processes in vivo

131I Na/I symporter

223Ra Calcium ”analogue”
Same group

Molecular recognition of targets
on the surface of tumor cells



Targeted cancer therapy
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• Iodide -> thyroid (Na/I symporter)
• Therapy of thyroid disorders and 

thyroid cancer
• Used over 60 years 
• Unfavourable radiation profile (high 

energy gamma), limited use nowadays

Passive targeting -> Metabolism-> Accumulation

131I
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After Chernobyl’s disaster people 
were given Lugol’s solution 
containig 10% KI and 5% I.

Do you know why?

fromchernobyltofukushima.com; blogspot.com



Targeted cancer therapy
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Passive targeting -> Metabolism-> Accumulation

• 89Sr, 223Ra, 153Sm -> Ca analogues 
accumulate in bones

• 89Sr high E beta emitter (0.58 MeV) 
Metastron- for bone metastasis (FDA)

• 223Ra alpha-emitter, high LET. 
Alpharadin- skeletal bone metastasis 
and castration-resistant prostate 
cancer (very effective, FDA fast track)

89Sr

223Ra



Targeted cancer therapy
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”Magic bullet” by P. Erlich (1900)

Targeting
cancer

• Drugs
• Toxins
• Radionuclides

• Carriers (nanopartiles)
• Proteins (antibodies)

Therapeutic 
effect

linker

Molecular design of targeted conjugates



Targets for cancer therapy
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Hanahan, Weinberg ”Hallmarks of cancer” 2000 and 2011



Targets for cancer therapy
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Function of target
Target
(biomarker)

Targeting 
molecule

Indication

Immune response 
of B cells

CD20 Zevalin
Bexxar

Lymphoma

Endocrine system, 
neurotransmission, 
cell growth

Somatostatin
receptors

Somatostatin 
analogues (e.g. 
DOTATATE)

NETs

Uptake of 
folate/unknown

PSMA ProstaScint Prostate cancer



Pharmacokinetics: dosimetry

• A Absorption

• D Distribution

• M Metabolism

• E Excretion
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Selection of a nuclide makes a difference 
between success and failure

Factors influencing selection of nuclides (labels):

• Expected tumor size

• Cellular processing of targeting protein by cancer cells

• Uptake of protein in excretory organs

• Size of targeting protein
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Internalization of radiolabeled proteins

lysosome

endosome

internalization

diffusion

externalization

label

targeting 
protein

target

cytoplasm

cell membrane

Residualising labels

(metals)

Non-residualising labels

(halogens)
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Cellular retention of radionuclides

The use of residualizing 
labels (metals) improves 
cellular retention of 
radionuclides delivered by 
antibodies because 
antibodies are internalized!

Incubation time (h)
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Processing of trastuzumab by 
breast cancer cells in vitro



Retention in excretory organs

L L

124I: non-residualizing 111In: residualizing



Proteins and peptides
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Radioimmunotherapy

using mAbs / their fragments
for radionuclide therapy

 using therapeutic mAbs already approved for clinical use
 historically, mAbs were the first targeting vectors
 high affinity to targets

But…

 Long-half life in blood -> damaging normal organs
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Radioimmunotherapy of lymphoma:
clinical success

Witzig. J Clin Oncol. 2002;20:2453-2463. 

ZEVALIN 
(n=64)*

Rituximab 
(n=66)**

ORR 83% 55%

CR 38% 18%

ZEVALIN
(90Y-ibritumomab tiuxetan) 

BEXXAR
(131I-tositumomab) 

BEXXAR 
(n=64)*

Chemo 
(n=66)**

ORR 65% 28%

CR 20% 3%

Kaminski J Clin Oncol. 2001;19:3918-28.

Bexxar: Commercial failure, 
withdrawn from the market in 2014
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Size optimization of proteins

Berndorff D et al. Clin Cancer Res 2005;11:7053s

kidney
filtration
cut-off ~ 60 kDa



Size-optimization:  131I-L19-SIP

Berndorff D et al. Clin Cancer Res 

2005;11:7053s
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Radioimmunotherapy of solid 
tumours: no success yet

Issues to be solved:
 High radioresistance of solid tumours
 Low dose rate during radioimmunotherapy
 Low doses delivered to tumors

- Slow extravasation of intact antibodies
- Slow tissue penetration
- Slow blood clearance  high dose to bone marrow

Possible solutions:
- treatment of minimal residual disease
- (neo) adjuvant settings- combination therapy
- Size reduction of targeting protein
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Targeted radionuclide therapy of 
NETs

PET scan with 68Ga-DOTA-TOC

Metastases of NETs

J Nucl Med 2007, 48, 4, 508-518
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Targeted radionuclide therapy of 
NETs

Somatostatin analogue
DTPA-Octreotide

Somatostatin

Somatostatin analogue
DOTA-Octreotate

Theranostics 2012 2(5):481-501
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177Lu-DOTA-octreotate for 
targeted radionuclide therapy of NETs

177Lu-DOTA-TATE was FDA approved in January 2018 for treatment of NETs

https://www.youtube.com/watch?v=6lqnMIwplcE
https://www.youtube.com/watch?v=6lqnMIwplcE
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Targeted radionuclide therapy of 
NETs: (limited) clinical success

Message: size reduction of targeting protein 
might be the key to success

Treatment With the Radiolabeled 

Somatostatin Analog [177Lu-

DOTA0,Tyr3]Octreotate: Toxicity, 

Efficacy, and Survival: 

Kwekkeboom J Clin Oncol 2008: 
26:2124-2130

SD stable disease
CR, PR, or MR - remission
PD progressive disease
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Targeted radionuclide therapy of 
prostate cancer

Target: prostate-specific membrane antigen 
(PSMA) is a biomarker for prostate cancer 

Ligands: various small molecules < 5 kDa

PET Imaging 
with 68Ga

Beta therapy 
with 177Lu

Clin Transl Imaging 4, 487–489 (2016)
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Not approved yet. Hundreds of PSMA clinical trials all over the world!
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Personalized treatment.

“…All patients received a single infusion at a dose level of 40 to 60 mCi/m2

based on a previous phase I, dose-finding trial…”

Liersch. J Clin Oncol. 2005;23:6763-70

Administration of maximum tolerated activity 
determined in Phase I/II
activities determined for the least resistant patients 
undertreatment of  many patients 

Current status

“…a total dose of 75 mCi/m2 was administered…”

Meredith. Clin Cancer Res. 1996;2:1811-8
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Personalized treatment.
Patient-specific dosimety

Garske-Roman. PhD thesis. Uppsala

Dosimetry-guided treatment of NET using 177Lu-DOTA-TATE

Dosimetry- guided therapy of advanced 
colorectal NETs with 177Lu-DOTA-TATE

< 23 Gy to kidney
23 Gy to kidneyMaximum number of cycles with 7.4 

GBq of 177Lu-DOTA-octreotate per
patient before reaching 2 Gy to the 
bone marrow or 23 Gy to the kidney
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Radionuclide cocktail approach

Treatment of small and large somatostatin receptor-positive tumors 
using 90Y and 177Lu-labeled somatostatin analogue

De Jong. J Nucl Med. 2005;46 Suppl 1:13S.
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Radionuclide therapy in Sweden

http://www.isotopterapi.se/
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Radionuclide therapy in Sweden

http://www.isotopterapi.se/
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Take home messages

Advantages of radionuclide targeting:
• No multidrug resistance
• Cross-fire irradiation
• No alternative signalling pathways
• Different toxicity profile
• Independent of immune system of a patient

Factors influencing selection of labels:
• Size of tumors
• Size of targeting protein (half-life matching)
• Cellular processing of targeting protein by cancer cells
• Uptake of protein in excretory organs
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Take home messages

Radioimmunotherapy of lymphoma: clinical success!

Radioimmunotherapy of solid tumors: no success yet…
Possible solutions:
• Treatment of minimal disease

• Reduction of size of radiolabelled proteins to
- reduce bone marrow exposure
- improve extravasation and tissue penetration

• Personalized treatment and patient-specific dosimetry

• Novel targets / tracers with optimal PK/PD profile
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Take home messages

Radionuclide therapy at its current state does not 
completely eradicate the disease but is aiming to:

1) Extend survival in combination with other options

2) Provide palliative care by
- Reducing pain (bone metastasis Alpharadin)
- Reducing symptoms (treatment of NET reduces 
hyperactivity of hormone-secreting glands, 
hyperinsulinomas etc.)

3) Improve quality of patient’s life
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Research from the laboratory
of Prof. Vladimir Tolmachev

Radionuclide tumour targeting using 

engineered scaffold proteins

for imaging and therapy of cancer

StockholmMoscow

Protein production
and analysis

Radiolabeling,
in vitro & in vivo studies

Uppsala



Antibody

150 kDa

Affibody Molecule

6-7 kDa

• High (picomolar) affinity
• Small size
• Robustness
• Both recombinant and 
synthetic production with site 
specific labelling 

Nygren.FEBS J. 2008:2668 
Ahlgren. Curr Pharm Biotechnol. 2010:581.

Development of affibody-based  
radionuclide therapy 



Human Epidermal Growth Factor Receptor 
(HER2) imaging

HER2 overexpression in:
• Breast cancer (20-25%)

• Gastroesophagal cancer (10-20%)

• Ovarian cancer (8-35%)

Targeted therapy Trastuzumab

Imaging:
• Whole-body evaluation of expression

• Selection of patients for therapy

• Monitor response to treatment

Krasniqi et al. J Nucl Med 2018;59:885-891

89Zr-trastuzumab (mAb)
5 days after injection
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Biodistribution of 111In-Bz-DTPA-Z HER2:342
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tumor

caecum

kidneys

1. Engfeldt et al., Eur J Nucl Med 2007, 34:722;

2. Tran et al., Bioconjugate Chem, 2007, 18:1956;

3. Ekblad et al., Eur J Nucl Med, 2008, 35:2245; 

4. Ahlgren et al. J Nucl Med. 2009, 50:781;

5-6. Wållberg et al. J Nucl Med 2011;52:461.

1. PK properties of labeled protein:
optimizing lipohilicity profile
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Primary agent
bound to cancer cell

Radiolabeled
secondary agent

Complex formed after 
hybridization

2. Pretargeting strategy
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Affibody-based PNA-mediated pretargeting

6Westerlund et al. Bioconjug Chem. 2015;  Honarvar et al. Theranostics. 2016.
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Gamma-camera imaging of mice bearing 
HER2-expessing SKOV-3 xenografts at 1 h 

after injection of 111In-labelled agents 

Negative control
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Westerlund, Altai et al. J Nucl Med. 2018 Jul;59(7):1092-1098. doi: 10.2967/jnumed.118.208348.

Radionuclide Therapy of HER2+ Xenografts Using 
Affibody-Based PNA Pretargeting

6 cycles of radionuclide therapy with 177Lu-HP2 doubled 
median survival of mice (66 d. vs 37 d.)

https://www.ncbi.nlm.nih.gov/pubmed/29439013


60

Tolmachev et al. Cancer Res. 2007; 67(6):2773–82. 

Orlova et al. J. Nucl. Med. 2013; 54: 961–968

Radionuclide therapy with 177Lu-affibody-ABD completely 
prevented the formation of tumors in mice

3. Preventing excretion of affibody via kidneys 
by fusing it with an albumin binder


